HEAT TRANSFER IN A UNIFORM MIXTURE OF TWO
DISPERSED MATERIALS
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Heat transfer in a dispersed system consisting of a uniform mixture of a coarse- and a fine-
grained material with boundary conditions of the fourth kind is considered. The solution is
compared with experimental data., Expressions estimating the time of onset of thermal quasi-
equilibrium are obtained.

The method of solving problems of this type is usually based on a particular ordered structure for the
mixture and selecting an elementary cell of the system, By the latter we mean a minimal volume such that
if it is duplicated in a particular manner an infinite number of times it reproduces the structure of the mix-
ture, For a system consisting of a uniform mixture of particles corresponding to the condition d; > d,,
this is a cube at the center of which is a particle of dimension d;, In thelimit,the problem can be reduced
tothe discussion of heat transfer between a spherical source and a semi~infinite mass of dispersed material.
A similar problem was investigated in [1, 2] for boundary conditions of the third kind, As aresult,the rela-
tive coefficients of heat transfer between a sphere and a dispersed medium were determined,

The above results, processed in accordance with the computational recommendations of [2], are shown
in Fig.1, It follows from this that the results are in conflict with each other, a difference in the relation
between Nu and d; being observed.

Heat transfer in a uniform mixture of two dispersed materials having different temperatures at the
initial moment of time was discussed in [8-10]. Thus, Tsukhanova and Salamandra recommend the following
equations for the calculation of the temperature of the mixture components:
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Since the heat-transfer coefficient & is unknown in these equations, the authors propose to determine
it in advance for each case in experiments on the cooling of a sphere in a dispersed system,

The following equation was obtained in [9] on the basis of experiments on heat transfer in a uniform
mixture of two dispersed materials using the data of [8]:

Bi = —0.783--0.726

o, @)

0
The heat-transfer coefficient, computed from Eq, (3), differs from experimental data of [1] in many

cases by more than 50 times, This indicates the need to seek other solutions of the problem. We seek the
solution for the cases d; > d, in the following conditions,

M.V, Lomonosov Odessa Technological Institute, Translated from Inzhenerno-Fizicheskii Zhurnal,
Vol, 18, No. 1, pp.45-51, January, 1970, Original article submitted March 26, 1969.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

33



N
o
07 ® — 1 o
o — 2
o — 7
ot b ]

20}—X

/

0

Fig.1

20 ’d1

Fig,2

Fig.1l. The Nusselt number Nu as a function of d; (d;, mm): 1) cooling of a metal sphere in a
filling of metal spheres (d, = 4,76 mm) in the temperature range 660-250°C [1]; 2) as gbove in the
temperature range 250-100°C [1]; 3) cooling of a metal sphere in a filling of half-coke in the tem-
perature interval §00-250°C [1] (d, = 3-5 mm); 4) cooling of a metal sphere in a filling of metal
spheres in the temperature interval 350-100°C, d; =d, [2].

" Fig.2. The experimental apparatus: 1) drying cabinet; 2) wooden box; 3) spheres; 4) porcelain
grid; 5) sand; 6) cold thermocouple junction; 7) galvanometer,

1, The more dispersed material is assumed to be quasi-homogeneous, subject to the Fourier dif-
ferential equation in terms of the effective characteristics of the medium,

2. The system of thermal conductivity differential equations is solved with boundary conditions of the

fourth kind,

It is assumed that the process satisfies the condition Fo > Fo,,, i.e., the time during which the two
materials are in contact has no effect on the applicability of condition (1) [3, 4]. That this is permissible is
confirmed, in particular, by probe methods of determining the thermophysical characteristics of the dis-
persed materials [5] and also by the comparison of the analytic solution [6] with experimental results [7].

To simplify the solution we replace the elementary cell —a cube —by an equivalent sphere with a
particle d; at its center, The effect of the surrounding medium on the boundaries of an elementary volume
is determined by the adiabatic condition, In this case the change in'the area of the elementary surface as
a result of replacing the cube by an equivalent sphere does not play a significant role. For an adiabatic

composite sphere, the particles of which have different temperatures at the initial moment of time, the prob-
lem can be formulated mathematically as follows:

boundary conditions
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Fig.3. Comparison of the calculated and experimental results
(r, min): 1) calculation by numerical method; 2) experimental
results; 3) calculation by the method of [1].

Fig.4. Comparison of the solution by the numerical method
with that given by (9), (10) (r, min): 1) numerical method; 2)
from Egs, (9), (10).

initial conditions
=0, 8,=1, 8,=0. (4)

This problem was solved numerically using a Ural-3 computer, The temperatures at the center of the
sphere and at the outer boundary of the cell were computed to an accuracy of 0.2%.

The equilibrium temperature is assumed to be

g, = =% 01 (5)
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The computed curves for the cooling of a sphere were compared with the experimental results ob-
tained from the apparatus shown in Fig, 2.

The drying cabinet contains a wooden box of dimensions 90 x 90 x 120 mm with metal or gypsum
spheres with dy between 9,55 and 20.5 mm, The spheres were glued with epoxide resin to porcelain grid
gratings with d = 1,1 mm and pitch 25 mm, the mass of which is negligible in comparison with the filling,

A copper —constantan thermocouple of 0,1 mm wire was fixed to the central sphere, A constant tempera-
ture, 20°C higher than that of the dispersed material, was maintained in the cabinet, The cold thermocouple
junction was placed in a small box outside the cabinet, The emf of the thermocouple was measured using

an M-16 galvanometer (scale unit 0,1°C), After the spheres were initially heated to the equilibrium tempera-
ture (taking 2-3 h) the dispersed materials - fine sand, 101, 274, 632 ¢ — was poured into the box, Its thermo-
physical properties are given in Table 1,

The cooling curves for the sphere in one set of conditions were plotted 4-6 times, after which the re-
sulting data were averaged., The scatter of the experimental points did not exceed £15%.

Calculated and experimental results are compared on Fig,3. We see from the graphs that the calcu-
lated results agree with the experimental results. Also shown in Fig, 3 are the results of calculating the
time for the initial heating of the mixture using the method of [1], We see that calculation using the method
of [1] significantly reduces the true time to reach the equilibrium temperature,

Thus, calculation of the temperature change in the mixture using an adiabatic composite sphere and
boundary conditions of the fourth kind yields satisfactory agreement with experiment, In this connection, an
attempt was made to find an approximate analytic solution of the problem. To do this,the system (4) was
reduced to the following form for N =3, M = 3:

de,
—L =5(0,—0,),
. (B,— 0y)

doe.
-E_fr—C(el——Gz) for ©=0, 8;=1, 0,==0.
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TABLE 1, Thermophysical Characteristics of Eliminating the right side of these equations and

Sand solving by the method of separating the variables, we
Sand size, B~ | obtain
Thermophysical ,
characteristics 104 274 632 8,= Py fexpl—T(b+ )] —1} +1,
+C
éc ‘m?/h 5,9.10-4 7,4:10% | 8,58-104 c . (6)
N W/m?- deg 0,135 0,206 0,248 8= ——{l—expl— 6+ o).
c, ki/deg 0,452 0,452 0,452 +c
Here
8a;A, . 8ayMRy

;= .
Ry [M (Ry— Ry) +MyRy] (Rz— R) [A, (Ry— Ry) + AoRy]

If we substitute the condition that 6; and 6, coincide to within p, we obtain from (6) the time to reach
the equilibrium temperature

Tp = _hlp .
btc
When 7 — « the equilibrium temperature is defined by the equation
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The equilibrium temperature of the sphere —shell system can also be determined by a different method:
from the heat balance equation, Assuming that 6; = 1 and 6, = 0 for T = 0, we obtain
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from which
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By comparing (7) and (8) we find that the exact solution differs from the inexact inhaving R32/R1 in place
of R% in the denominator of the fraction, Hence, the exact value of the coefficient ¢ has the form
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After similar corrections the computational expressions for 6, 6,, and 7 take the following forms:

b
B - b "—1 19
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9, = b—(:ck‘ {1+ exp[—T(b +c)l}s (10)
U .. (11)
b+,

Equations (9), (L1) are valid for 16 < (d;/d,) < 250; 2 < (ai/az) < 760, Since the above corrections hold
unconditionally only at the point T = «, we can compare the computed values using (9) and (10) with the nu-
merical solution of the same problem (Fig.4). It follows from the graphs that the approximate analytic solu-
tion agrees with the numerical solution of the problem to within +5%. In this connection, Egs. (9), (10) can be
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used to calculate the temperature at typical points of the mixture, while (11) is recommended for calculating
the time needed for the components of a uniform mixture of two dispersed materials to reach equilibrium
temperature, Then R, is determined from the equations

where

ti: tZ’ tgn tg
T{, T

Ty

UETRIP)
C1,C9y P1, 0y
d19d2

T
a15a2s7\197\2
Vi, Vy
N,M

By, 6y

DO =
P

Rzle-i/_é_le 3 1
1

=8
N eV
ﬁl V1+V2 ’ ﬁz V1+ Vz‘
NOTATION

are the current and initial temperatures of the hot and cold media, °C;

are the initial temperatures of the components, °K;

is the equilibrium temperature, °K;

are the volume concentrations of mixture components;

are the heat capacities and densities of components;

are the dimensions of component particles;

is the current value of coordinate;

are the thermal diffusivity and thermal conductivity of components;

are the volumes of coarse- and fine-grained materials;

are the numbers of separation points in the sphere and the spherical shell;
are the relative nondimengional temperatures of the hot medium at the center of the sphere
and of the cold medium at the outer boundary of the elementary cell,
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